Quotients by Reductive Group, Borel Subgroup, Unipotent Group and Maximal Torus
نویسنده
چکیده
Consider an algebraic action of a connected complex reductive algebraic group on a complex polarized projective variety. In this paper, we first introduce the nilpotent quotient, the quotient of the polarized projective variety by a maximal unipotent subgroup. Then, we introduce and investigate three induced actions: one by the reductive group, one by a Borel subgroup, and one by a maximal torus, respectively. Our main result is that there are natural correspondences among quotients of these three actions. In the end, we mention a possible application to the moduli spaces of parabolic bundles over algebraic curves for further research. — Dedicated to Robert MacPherson on the occasion of his 60th birthday
منابع مشابه
On One Class of Unipotent Subgroups of Semisimple Algebraic Groups
This paper contains a complete proof of a fundamental theorem on the normalizers of unipotent subgroups in semisimple algebraic groups. A similar proof was given later by A. Borel and J. Tits (see also bibliographical remarks in the introduction to their paper). I.I. Pyatetskii–Shapiro suggested me to prove the following theorem which in his opinion would be of interest for the theory of discre...
متن کاملGood filtrations and F -purity of invariant subrings
Let k be an algebraically closed field of positive characteristic, G a reductive group over k, and V a finite dimensional G-module. Let B be a Borel subgroup of G, and U its unipotent radical. We prove that if S = SymV has a good filtration, then SU is F -pure. Throughout this paper, p denotes a prime number. Let k be an algebraically closed field of characteristic p, and G a reductive group ov...
متن کاملComputation of the Cartan Spaces of Affine Homogeneous Spaces
Let G be a reductive algebraic group and H its reductive subgroup. Fix a Borel subgroup B ⊂ G and a maximal torus T ⊂ B. The Cartan space aG,G/H is, by definition, the subspace of Lie(T )∗ generated by the weights of B-semiinvariant rational functions on G/H . We compute the spaces aG,G/H.
متن کاملMaximal prehomogeneous subspaces on classical groups
Suppose $G$ is a split connected reductive orthogonal or symplectic group over an infinite field $F,$ $P=MN$ is a maximal parabolic subgroup of $G,$ $frak{n}$ is the Lie algebra of the unipotent radical $N.$ Under the adjoint action of its stabilizer in $M,$ every maximal prehomogeneous subspaces of $frak{n}$ is determined.
متن کاملA Classification of Certain Finite Double Coset Collections in the Classical Groups
Let G be a classical algebraic group, X a maximal rank reductive subgroup and P a parabolic subgroup. This paper classifies when X\G/P is finite. Finiteness is proven using geometric arguments about the action of X on subspaces of the natural module for G. Infiniteness is proven using a dimension criterion which involves root systems. 1 Statement of results Let G be a classical algebraic group ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006